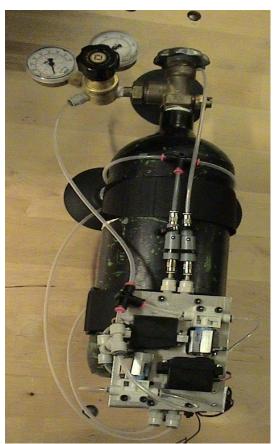

Intelligent Wall Climbing Robot

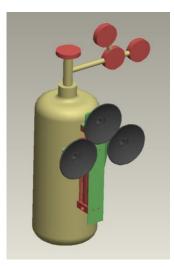
Amaan Hundal Matt Kloos Mike Lepkowski Will Rashin

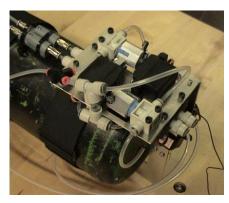
Problem Statement

- Design a remote-controlled robot that can crawl up a vertical wall with no cable or wire support, and carry a five pound load in addition to its own weight.
- Important design parameters include reliable adhesion to the wall during transit, speed, tolerance to both smooth and rough surfaces, lift capability, and efficient use of any onboard battery power.

Initial Design Concept:


- Use actual components during development phase
- Use ground source for compressed air and venturi style vacuum pumps
- Employ dual rods of cylinder to eliminate need for linkage
- Design later modified to incorporate air cylinder into the climbing robot


Final Prototype


- Operation
 - Relies on sequenced translational motion and vacuum cups
- Employs nitrogen tank
 - Source of compressed air for vacuum pumps
 - Weighs 12 lbs
- Overall weight
 - 17 lbs (before loading)
 - Capable of carrying additional 10 lbs load up smooth vertical wall with a factor of safety of 2
- Valving
 - Total of 2 valves needed for crawler
 - Valve #1 controls suction cups
 - Valve #2 controls air cylinder
- Controls
 - Incorporates servos and controller/receiver to automate on/off valves

Many questions answered by design:

- Suction cups hold over 50 lbs each
- Two cup design unable to cope with moment created during extension
- > Valving offers instantaneous switch between cups
- Cylinder capable of lifting 60+ lbs, but movement is too quick

